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Finite-Temperature Black Hole Thermodynamics
and Maximal Acceleration

Giulio Landolfi1
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We show that horizon divergences for scalar fields in infinitely massive black hole
backgrounds can be eliminated by resorting to a maximal acceleration principle.

1. INTRODUCTION

The three decades have seen much in black hole physics. One of the
results that stimulated researchers is the so-called Bekenstein–Hawking for-
mula, which states that a black hole, at least a quasistatic and semiclassical
one, behaves like a thermodynamic object whose entropy is proportional to
the horizon area [1–3, 13, 14]. Several authors have noted that the appropriate
approach to the study of black hole thermodynamics is the statistical one,
based on counting the number of particle gravitational states [5, 7, 19, 21,
22]. Within such an approach, however, one finds that the infinite number
of states appearing on a black hole horizon introduces entropy divergences
of ultraviolet origin. This circumstance led ’t Hooft to regularize divergences
by means of a model, the so-called brick wall model, in which particles are
not allowed to be arbitrarily close to the horizon [19]. In this way, the entropy
turns out to be proportional to the horizon area, but is divergent as the cutoff
distance e approaches zero. In other words, the effect of the parameter e is
to cut off modes near the horizon (see also refs. 11 and 20).

An attempt to give to the introduction of a horizon cutoff a meaning
other than a technical one (the need to avoid infinities) has been pursuit by
McGuigan [15], who argued that the cutoff e can be related to a maximal
acceleration which appears in string theory. Actually, the naive observation
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that horizon divergences arise by virtue of the equivalence principle and
thermodynamic arguments suggest one to look for a dynamical interpretation
of the cutoff e within the pointlike formalism. With this in mind, ref. 21 on
infinitely massive black holes looks particularly interesting. Here e appears
indeed as a cutoff on the Rindler coordinate, so that it may be intrinsically
related to an upper limit on accelerations of pointlike particles.

In this paper we study a massive scalar field in an infinitely massive
black hole background when a maximal acceleration principle for pointlike
fields is taken into account ab initio. To this end, we analyze the Klein–Gordon
equation over the modified Rindler space-time suggested in ref. 10. We
evaluate the field free energy and elucidate the role played by the maximal
acceleration principle in removing the horizon divergences.

The outline of the paper is as follows. In Section 2, we briefly write
down essential formulas of Caianiello’s model. In Section 3, we consider the
Klein–Gordon equation in modified Rindler manifold and discuss its general
solutions. In Section 4, we derive the corresponding free energy, making use
of a WKB approximation. Section 5 gives conclusions.

2. MAXIMAL ACCELERATION AND CAIANIELLO’S
EMBEDDING MODEL

In the context of quantum physics, the conjecture of a maximal accelera-
tion for pointlike particles dates to Caianiello [8, 9]. Since then, the maximum
acceleration principle has been discussed in different contexts (see, e.g., refs.
6, 10, and 12 and references therein). It has been in particular realized that
the development of the theory of maximal acceleration relies on the differential
geometry of the space-time tangent bundle TM 5 M4 ^ TM4, where M4 is
the space-time base manifold and the four-velocity space TM4 is the fiber
manifold. Denoting coordinates of a generic point in the bundle as

{XA; A 5 0, . . . , 7] 5 Hxm,
c2

Amax
vm; m 5 0, . . . , 3J (1)

where xm and vm are the usual space-time and four-velocity coordinates,
respectively, we find for the line element in TM

dt2 5 dX A dXA 5 dxm dxm 1
c4

A2
max

dvm dvm (2)

The metric structure (2) automatically implies both a maximal velocity c and
a maximal acceleration Amax [6, 8–10]. Interestingly, quantization can be
interpreted as curvature of the relativistic eight-dimensional tangent bundle
TM. In TM, indeed, the standard operators of the Heisenberg algebra are
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represented as covariant derivatives and the quantum commutation relations
are interpreted as components of the curvature tensor [8, 9].

Since quantum fields are now defined on TM, one gets eight-dimensional
generalization of the field equations (see also ref. 6). In general, these equa-
tions are nontrivial. In order to investigate correction induced by the maximal
acceleration Amax on the fields equations, one needs effective tools. To this
end, the simple suggestion of Caianiello turns out to be useful to adopt an
embedding procedure which leads to an effective four-dimensional space-
time metric, g̃m,n, induced on M4 by the metric of TM. This induced metric
turns out to be defined according to (henceforth we use natural units É 5
c 5 1)

g̃mn 5
xa

jm

xa

jn 1
1

A2
max

ẋa

jm

ẋa

jn (3)

where ẋa 5 ẋa(jn) is the velocity field obtained by solving the equations of
motion in M4 and expressed in terms of the coordinates jn chosen to parame-
trize M4 [10]. Hence, one gets effective space-time metrics also containing
one-loop terms depending on maximal acceleration Amax. These terms are
expected to play a key role in closing the horizons, where accelerations would
exceed Amax.

3. MASSIVE SCALAR QUANTUM FIELD THEORY IN
MODIFIED RINDLER SPACE-TIME

The geometry outside the horizon of an infinitely massive black hole
is described by the Rindler metric, which is a reparametrization of the Min-
kowskian one. If xm, m 5 0, . . . , 3, denote the Minkowskian space-time
coordinates, then Rindler coordinates (h, s, x') are defined by means of the
transformation [18]

x0 5 s sinh h, x1 5 s cosh h, x' 5 (x2, x3) (4)

where h P (2`, `) and s P [0, `). In terms of the Rindler coordinates, the
Minkowskian line element takes the cylindrical form [we use the metric
signature (2, 1, 1, 1)]

dl2 5 2s2 dh2 1 ds2 1 dx2
' (5)

As is well known, the Rindler coordinate system is the coordinate system
associated with the Fermi–Walker nonrotating tetrad carried by a uniformly
accelerating observer [16]. Lines of constant s and x' are trajectories of
uniformly accelerated observers in the x1 direction of Minkowski space, s21

being the proper acceleration. Metric (5) thus describes a constant, static,
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homogeneous gravitational field. The most important property is the occur-
rence of a horizon located at s 5 0. By virtue of the equivalence principle,
a generic four-dimensional static space-time endowed with a horizon can be
regarded, near the horizon, as of the Rindler type.

Let us now consider a massive scalar field f propagating into a Rindler
space-time modified according to Caianiello’s embedding procedure. Such a
space-time has been derived in ref. 10 and is defined by the line element

dl2 5 2(s2 2 A22
max) dh2 1 ds2 1 dx2

' (6)

In the minimally coupled case, the Klein–Gordon equation on the modified
Rindler background (6) reads

F 21
s2 2 A22

max

2

h2 1
2

s2 1
s

s2 2 A22
max



s
1 o

i52,3 1


xi2
2

2 M 2Gf(h, s) 5 0

(7)

where M denotes the mass of f. Expanding the field f as

f 5 c(s) exp(2ivh 1 ik ? x')

we find that Eq. (7) takes the form

F v2

s2 2 A22
max

1
2

s2 1
s

s2 2 A22
max



s
2 j2Gc(s) 5 0 (8)

where j2 5 M 2 1 k2. Setting u 5 js, we then get the modified Bessel
equation of order iV 5 i(v2 1 j2 A22

max)1/2 with an inhomogeneous term:

Fu2 2

u2 1 u


u
2 (u2 2 v2 2 j2A22

max)Gc(u) 5 j2A22
max

2c
u2 (9)

The inhomogeneous solution can be obtained if two linearly independent
solutions of the homogeneous equation are known (see, e.g., ref. 17):

cinh(u) 5 j2A22
maxIiV(u) #

u

KiV(z)1z21 2cinh(z)
z2 2

2 M 22A22
maxKiV(u) #

u

IiV(z)1z21 2cinh(z)
z2 2 1 const (10)

In virtue of the asymptotic behavior at large arguments of the Bessel functions,
the K function can be selected as the solution of the homogeneous part. So
the solution of Eq. (9) can be written as
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c(s) 5 CoKiV(js) 1 cinh(js) (11)

where cinh(js) is determined via the integrodifferential equation (10). As
customary, a perturbative approach can be used in the general case [4, 17].

It is worthwhile to note that the presence of the inhomogeneous term
in Eq. (9) allows us to regulate the theory by demanding the vanishing of
the field f at the horizon without being obliged to introduce an unclear
condition for the Rindler frequencies [21]. Such a feature is easily shown
also in the special case of a massless scalar field in the bidimensional Rindler
space-time. When j 5 0, in fact, the general solution to Eq. (8) is defined
in terms of hypergeometric functions as

c(s) 5 C1F1iv, 2iv;
1
2

;
1
2

(Amaxs 1 1)2
1 C2!(Amaxs 1 1)F1iv 1 1, 2iv 1 1;

3
2

;
1
2

(Amaxs 1 1)2 (12)

where C1 and C2 are arbitrary constants. The request lims→A21
max f 5 0 is then

satisfied for C2 5 2C1 v coth(pv), with C1 to be determined through the
normalization condition.

4. STATISTICAL MECHANICS OF A MASSIVE SCALAR FIELD
IN MODIFIED RINDLER SPACE

In this section, we focus on the statistical mechanics of a scalar field
in a modified Rindler background (6). After performing the coordinate
transformation

Amaxs 5 cosh r (r $ 0), Amaxs 5 2 cosh r (r # 0)

we find that the Klein–Gordon equation (8) takes a Schrödinger-like form.
This allows us to evaluate the number of modes Nv , with v * M/Amax, by
means of a WKB approximation. We have

pNv 5 #
rmax

rmin

dr !v2 2 (k2 1 M 2)A22
max sinh2(r)

i.e.,

Nv 5
v2Amax

4!k2 1 M 2
F 11

2
,

1
2
;2; 2

v2A2
max

k2 1 M 22 (13)

The free energy is defined via (see, e.g., ref. 21)
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F 5 Shb21 # d 2k
4p2 # dv

dNv

dv
f (v) (14)

where Sh is the area of the horizon, b 5 1/kBT, f (v) 5 ln [1 2 exp (2v/
kBT )], and dNv /dv can be evaluated from (13),

dNv

dv
5

vAmax

2!k2 1 M 2 FF11
2

,
1
2

; 2; 2
v2A2

max

k2 1 M 22
2

v2A2
max

8(k2 1 M 2)
F13

2
,

3
2

; 3; 2
v2A2

max

k2 1 M 22G
Equation (14) therefore takes the form

F 5
Sh

4pb # dv f (v)[I1 2 I2] (15)

where

I1 5 Amaxv # dk
k

!k2 1 M 2
F11

2
,

1
2

; 2; 2
v2A2

max

k2 1 M 22 (16)

and

I2 5
v3A3

max

8 # dk
k

(k2 1 M 2)3/2 F13
2

,
3
2

; 3; 2
v2A2

max

k2 1 M 22 (17)

Integrating over k in (16)–(17), we get in particular

I1 2 I2 5 v2A2
maxHF 2!2p

3G(3/4)2 1 F11
2

,
3
2

; 3; 212G
2

M
Amaxv

F121
2

,
1
2

; 2; 2
v2A2

max

M 2 22
Amaxv

8M
F11

2
,
3
2

; 3; 2
v2A2

max

M 2 2J
In the limit (vAmax)/M → `, the function I1 2 I2 tends asymptotically to the
value a . 0.57, so that formula (15) gives rise to a free energy leading term
of the standard form

F(b) > 2
p3aSh A2

max

180 b4 (18)

The result (18) qualitatively agrees with results obtained by other authors
[7, 20–22]. The only difference is the numerical coefficient, which, in general,
depends on the cutoff procedure.
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Before we conclude, a comment is in order. It is instructive, in fact, to
consider a rough approximation of Eq. (9). It is realized by neglecting the
inhomogeneous term so that a modified Bessel equation of order iV 5
i!v2 1 M 2A22

max arises. The free energy in this case can be easily evaluated
following the standard procedure. In particular, one obtains

F(b) > ShkBT
4p2 #

`

0

dv lnF1 2 exp12v
kBT2G

3 FA2
maxv2 1

v
V

M 2

2
ln11 2 !1 2 (M/AmaxV)2

1 1 !1 2 (M/AmaxV)22G (19)

Compare (19) to the formula obtained by Susskind and Uglum [ref. 21, Eq.
(2.20)] and note that we get the same leading term in the high-frequency
(low-mass) regime, F(b) > 2 p2Sh A2

max b22 /180, and a slightly different
behavior in the low-frequency (large-mass) regime. Thus, neglecting the
inhomogeneous term of Eq. (8) furnishes the link to the model of Susskind
and Uglum. It is interesting to note that such an approximation can be obtained
by shifting the horizon via a conformal transformation of the Rindler metric,

GRin
mn → (1 2 s2A22

max)GRin
mn

5. CONCLUSIONS

The origin of divergences of thermodynamic quantities in black hole
backgrounds derives from the infinite number of states appearing on the
horizon. In order to deal with finite expressions, one thus needs to introduce
a cutoff parameter e that shifts the horizon. This parameter can be seen as
an upper limit on acceleration for geodesic motion of fields in black hole
backgrounds. In this paper, we studied a quantum scalar field in a static
space-time with horizon, taking into account a maximal acceleration principle
ab initio. In particular, we used the modified Rindler space-time suggested
in ref. 10, for which, in practice, the horizon is shifted from s 5 0 to s 5
A21

max. General solutions to the Klein–Gordon equation were discussed. We
also computed the free energy of massive scalar fields in this geometry,
obtaining a revised integral formula for the free energy of a scalar field in
a Rindler-like background. As expected, it turns out to be finite, and in the
limit (vAmax)/M → `, it reduces to the well-known Planckian-like form. The
inverse of maximal acceleration plays the role of the cutoff parameter e of
the brick-wall-inspired models. The physical origin of horizon divergences
thus turns out to be related to the violation of the maximal acceleration
principle.
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